skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jiawen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data analyses are usually designed to identify some property of the population from which the data are drawn, generalizing beyond the specific data sample. For this reason, data analyses are often designed in a way that guarantees that they produce a low generalization error. That is, they are designed so that the result of a data analysis run on a sample data does not differ too much from the result one would achieve by running the analysis over the entire population. An adaptive data analysis can be seen as a process composed by multiple queries interrogating some data, where the choice of which query to run next may rely on the results of previous queries. The generalization error of each individual query/analysis can be controlled by using an array of well-established statistical techniques. However, when queries are arbitrarily composed, the different errors can propagate through the chain of different queries and bring to a high generalization error. To address this issue, data analysts are designing several techniques that not only guarantee bounds on the generalization errors of single queries, but that also guarantee bounds on the generalization error of the composed analyses. The choice of which of these techniques to use, often depends on the chain of queries that an adaptive data analysis can generate. In this work, we consider adaptive data analyses implemented as while-like programs and we design a program analysis which can help with identifying which technique to use to control their generalization errors. More specifically, we formalize the intuitive notion ofadaptivityas a quantitative property of programs. We do this because the adaptivity level of a data analysis is a key measure to choose the right technique. Based on this definition, we design a program analysis for soundly approximating this quantity. The program analysis generates a representation of the data analysis as a weighted dependency graph, where the weight is an upper bound on the number of times each variable can be reached, and uses a path search strategy to guarantee an upper bound on the adaptivity. We implement our program analysis and show that it can help to analyze the adaptivity of several concrete data analyses with different adaptivity structures. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Heterogeneous computing systems, e.g., those with accelerators than the host CPUs, offer the accelerated performance for a variety of workloads. However, most parallel programming models require platform dependent, time-consuming hand-tuning efforts for collectively using all the resources in a system to achieve efficient results. In this work, we explore the use of OpenMP parallel language extensions to empower users with the ability to design applications that automatically and simultaneously leverage CPUs and accelerators to further optimize use of available resources. We believe such automation will be key to ensuring codes adapt to increases in the number and diversity of accelerator resources for future computing systems. The proposed system combines language extensions to OpenMP, load-balancing algorithms and heuristics, and a runtime system for loop distribution across heterogeneous processing elements. We demonstrate the effectiveness of our automated approach to program on systems with multiple CPUs, GPUs, and MICs. 
    more » « less